(Technical Note) A simple and novel method for acoustic streaming power measurement of ultrasonic horn

A. Hajnorouzi^{*1}, R. Afzalzadeh²

1. Department of Physics, Faculty of Basic Science, Shahed University 2. Department of Solid State Physics, Faculty of Physics, K. N. Toosi University of Technology

Abstract

Ultrasonic horn with transfer of acoustic wave into an aqueous solution results in unique properties. When, transfer of sound wave into a liquid results in liquid movement in the direction of wave propagation which gradually loses its energy due to the viscous friction. This wave motion induces a flow which is known as acoustic streaming or micro-streaming. In this article, a simple innovative system is designed and built to measure the power generated by micro-streaming. By measuring and analyzing the physical relations, the micro-streaming power obtained for various amplitudes was between 0.5 to 2.61 watts and the maximum displacement of the tip acquired was between 8 to 25 micro-meter for this ultrasonic horn.

Keywords: Ultrasounic horn, Microstreaming, Acoustic pressure, Bubble cloud, Measurment.

pp. 59-64 (In Persian)

^{*} Corresponding author E-mail: ahajnorouzi@shahed.ac.ir